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The anomalous properties of Nambu–Goldstone bosons, found by Miransky
and others in the symmetry breaking induced by a chemical potential, are
attributed to the SSB of Lie and current algebras. Ferromagnetism, antiferro-
magnetism, and their relativistic analogs are discussed as examples.2
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1. INTRODUCTION AND SUMMARY

In general the number of the Nambu–Goldstone (NG) bosons associated
with a spontaneous symmetry breaking (SSB) GQH is equal to the
number of symmetry generators Qi in the coset G/H. In the absence of a
gauge field, their energy w goes as a power kc of wave number. In a rela-
tivistic theory, c=1 necessarily unless Lorentz invariance is broken.
There are, however, exceptions to the above ‘‘theorem.’’ (1–5) Recently

one was found to occur in connection with color superconductivity in high
density quark matter, where finite quark masses act like a chemical poten-
tial, and can trigger a kaon condensation. Two of the expected three NG
modes coalesce into one, with c=2. I would like to give a dynamical
explanation to the phenomenon.
I will first state the main result, which has a general validity. Suppose

a symmetry generator (charge) Q develops a vacuum expectation value
OQP=C. If two other charges Qi, Qj are such that their commutator
[Qi, Qj]=iQ, then their corresponding zero modes Zi, Zj behave like



canonical conjugates of each other: [Zi, Zj]=iC.3 Hence they belong to

3 A similar phenomenon was observed in the context of string theory. (18)

the same dynamical degree of freedom, and the number of NG bosons is
thereby reduced to one per each such pair. The dispersion law c=2 is
obtained by a more detailed analysis.
In the breaking of space-time symmetries, not surprisingly, standard as

well as non-standard properties of zero modes also appear. (4, 6–8) These
cases are largely outside the scope of the present article, but an analog of
ferromagnetism will be discussed at the end as an example.
The chemical potential m is an intensive parameter conjugate to a con-

served chargeQ. It rearranges the spectrum and thus may change the vacuum.
In the Lagrangian it appears in the form of a constant time component of a
gauge field. Here I work with the correspondingHamiltonian:H=H0−mQ.

2. A RELATIVISTIC U(2) MODEL

In the example (2) of a two-component complex spin 0 field (kaon) F (a),
a=1, 2, with U(2) symmetry broken to a U(1) by the U(1) charge Q0:

L=(“0+im) F† · (“0−im) F−NF† ·NF−m2F† ·F−l(F† ·F)2,

H=P† ·P+NF† ·NF+m2F† ·F−mQ0+l(F† ·F)2,

P=(“0+im) F†, P†=(“0−im) F, Q0=−i(P ·F−F† ·P†)

(1)

First ignore the kinetic energy term. Q0 acts like a magnetic field and
splits particle and antiparticle for both components equally like a sea-saw.
With increasing m, an SSB occurs when the lower ones touch the ground,
and stay thereafter as zero modes. So there are only two NG modes instead
of the expected three. This can also be understood as follows.
The classical minimum of H corresponds to a stationary state

“qH=“pH=0. Make the real field decomposition:

F (1)=(x+iy)/`2, P (1)=(px+ipy)/`2,

F (2)=(u+iw)/`2, P (2)=(pu+ipw)/`2
(2)

Thus

H=(1/2)[(p 2x+p
2
y+p

2
u+p

2
w+(m

2+k2)(x2+y2+u2+w2)]

−m(xpy−ypx+upw−wpu)+l(x2+y2+u2+w2)2/4

=(1/2)[(px+my)2+(py−mx)2+(pu+mw)2+(pu−mu)2

+(m2−m2)(x2+y2+u2+w2)]+l(x2+y2+u2+w2)2/4 (3)
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The minima are given by

px+my=0, py−mx=0, pu+mw=0, pw−mu=0,

m2x−mpy=m2y+mpx=m2u−mpu=m2w+mpu

=−l(x2+y2+u2+w2) — −lR2, or

lR2=m2−m2 (> 0 assumed)

(4)

Choose a minimum at x=v, py=mv, v2=(m2−m2)/l > 0. The canonical
momentum is nonzero since it is not just a time derivative. Make the shifts

x=v+x̃, py=mv+p̃y (5)

where the tilded quantities may be assumed to have no spatially constant
components. Dropping the tilde for simplicity hereafter, the Hamiltonian is
turned into

H=(1/2)[(px+my)2+(py−mx)2+(pu+mw)2+(pw−mu)2

+k2(x2+y2+u2+w2)]+(m2−m2) x2

−m4/4l+nonlinear terms

=(p2x+p
2
y+p

2
u+p

2
w)/

2

+(m2+k2)(x2+y2+u2+w2)/2+(m2−m2) x2

−m(xpy−ypx+upw−wpu)−m4/4l+nonlinear terms (6)

and generate v-dependent NG terms Zi in Qi:

Qi Q Q
−

i=Qi+Zi,

Z0=Z3=v(py+mx)+mv2,

Z1=v(pw+mu), Z2=v(pu−mw)

(7)

Then one finds

[Z1, Z2]=2iv2m (8)

consistent with the Lie algebra relation [Q −1, Q
−

2]=2iQ
−

3. So Z1 and Z2
belonging to F (2) are canonical conjugates of each other. Together they
represent the same dynamical degree of freedom.
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3. THE DISPERSION LAW

The dispersion law for small k may be found in the following general
way. For this purpose it suffices to ignore nonlinear interaction terms as
well as couplings between the NG and non-NG (Higgs) part of the collec-
tive modes, since the latter appear only through the kinetic term and thus
of higher order in k. The collective part of the Hamiltonian (density),
representing the NG and the Higgs part may be assumed to be of the
quadratic form Hcol=A(p, q)+k2B(p, q) in their appropriate canonical
coordinates p and q. ( The k dependence can be nonisotropic.) It is also safe
to assume [A, B] ] 0 (unless A=0), namely that the kinetic term does
cause excitations. Then there are three possibilities:

(1) A depends on both p and q: A=A(p, q),

(2) A=A(p) (or equivalently A=A(q)),

(3) A=0.

Case (1). At k=0, H takes the form of a harmonic oscillator, so the
frequency w will go as const.+O(k2) for small k. This is the massive
(Higgs) mode.

Case (2). A(p) (or A(q)) and B(p, q) together essentially form a
harmonic oscillator, so w ’ k. This is the regular case of the NG mode with
phononlike dispersion law. In the above example it holds for the charges
Z0=Z3 coming from the F (1) component.

Case (3). This applies to charges Z1 and Z2 coming from F (2). If
present, they would appear as conjugates and massive like the Case 1,
which is a contradiction for zero modes. Hence A=0, B=B(p, q), and
w ’ k2 trivially.

These results are in conformity with the general theorem of Nielsen
and Chada. (1)

4. FERRO- AND ANTIFERROMAGNETISM

Although the results derived above were motivated by symmetry
breaking due to a chemical potential, it is clear that they should be valid
generally, with or without a chemical potential, for relativistic as well as
nonrelativistic examples, and even if the Hamiltonian is not expressed in
the field theory language. The condensate or order parameter Q need not
be one of the symmetry generators. Suppose a condensate forms for an
operator O, OOP=C. If a set of generators Qi do not commute with O:
[Qi, O]=Oi ] 0, the zero modes Zi may be represented by the low-k
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Fourier components corresponding to either of the sets Oi or Qi, and an
effective quadratic Hamiltonian can be constructed for them from the
original equations of motion. Then any pair whose commutator yields Q
leads to [Zi, Zj]=iC, so they are canonical conjugates, and the above
theorems should apply.
Ferro- and antiferromagnetism are two examples of the above state-

ment. (1) In the case of ferromagnetism, the symmetry operators are the
total spin

Si=C si/2, i=1· · · 3 (9)

the order parameter is OS3P, say, and the relevant dynamical variables are
the small-k Fourier components Si(k). Applied to a ground state, these
operators will generate low-lying states for which an effective quadratic
Hamiltonian may be constructed. (9) The condensate S3 is nonzero, so the
zero modes S1, S2 are canonical conjugates, and form a single zero mode
with a dispersion law c=2.
In antiferromagnetism, the symmetry generators are again Si, but the

order parameter is in the graded (staggered) sum

Oi=C
even
si/2−C

odd
si/2,

OO3P=C, OS3P=0
(10)

The Si and Oi satisfy the so(4) algebra

[Si, Sj]=[Oi, Oj]=iEijkSk, [Si, Oj]=iEijkOk (11)

Applying the symmetry generators S1, S2 to O3 one gets −O2, O1. So either
the former pair or the latter may be taken as representative of the zero
modes. But since [S1, S2]=[O1, O2]=S3, OS3P=0, the two modes are
independent, and the dispersion law should be a phononlike c=1. The
relation [S1, O2]=−[S2, O1]=iO3 also implies that the pairs (S1, O2) and
(−S2, O1) serve as canonical variables for the two modes in an effective
Hamiltonian.
The relation between the above two alternative sets can be further

illustrated by the case of the usual relativistic O(4) sigma model with the
field Om, m=0· · · 3, OO0P=C. The broken symmetry generators are {Q0i}
which, applied to O0, lead to the other set {Oi}: [Q0i, Oj]=idijO0. Since
[Oi, Oj]=0, [Q0i, Q0j]=−iQij, OQijP=0, the different modes are inde-
pendent, but Qi and the zero mode part Zi of O0i are the canonical
variables for mode i. In fact one knows from the sigma model Lagrangian
that Zi=CȮi.
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5. CHEMICAL POTENTIAL AS A THERMODYNAMIC VARIABLE

In thermodynamics and statistical mechanics the chemical potential m
is conjugate to a conserved quantity Q, to be related by

−“mJ=OQP (12)

where J is the (grand canonical) free energy. The relation also holds in
quantum mechanics for the ground state energy E0 because its wave func-
tion k minimizes OHP with respect to arbitrary variations, and in particu-
lar, the variation of m in k(m). Naturally it is also expected to hold in
quantum field theory when an SSB occurs. The vacuum is a variational
minimum with respect to the order parameter v:

“mE0=O“mHP+“v OHP dv/dm=O“mHP (13)

This property of the chemical potential does not extend to excitations since
their Hamiltonian has v dependence but is outside of the minimization
procedure. It is also to be noted that the excitation quanta are not neces-
sarily eigenstates of Q. (In the U(2) example above, the modes in F (2) are
diagonal in Q, but those in F (1) are not.)
At finite temperature, the condensate should be determined by self-

consistently minimizing the free energy J. This involves thermodynamic
sums over the collective modes, which will also modify (renormalize) the
parameters through higher order loops. The thermodynamic relation,
Eq. (12), is then expected to be recovered, and the charge carried by a col-
lective mode of energy w will be given by OQwP=−“mw.
In the U(2) example,

J=lv4/4+(m2−m2) v2/2+F(v, T) (14)

where F is the thermal free energy determined from the quadratic part of
the Hamiltonian, Eq. (3), without setting lv2=m2−m2:

H=(1/2)(p2x+p
2
y+p

2
u+p

2
w)−m(pxy−pyx+puw−pwu)

+(k2+m2+lv2)(x2+y2+u2+w2)/2+lv2x2 (15)

plus corrections from loop effects. In actuality, however, these formal
properties of J are spoiled by the divergent zero-point energies of the col-
lective modes, which exist even at T=0, if one wants to compare unbroken
and broken phases.
The divergences can be removed if a normal product is taken for H

corresponding to subtractions according to the non-SSB free Hamiltonian.
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To see this, consider again the U(2) model. The normal product form :H:
of the Hamiltonian H is given by :H:=H−OHP, where OHP is taken with
respect to free Hamiltonian with mass m. For the quadratic Hamiltonian
Hcol for the collective modes after SSB, this gives

OHcolP=O(p2x+p
2
y+p

2
u+p

2
w)/2

+(k2+m2+lv2)(x2+y2+u2+w2)/2+lv2x2P

’ 1/(2p3) F dk3[2(k2+m2)1/2+3lv2/2(k2+m2)1/2] (16)

(The chemical potential term does not contribute: OQP=0.) On the other
hand, the true zero-point energy Ez is half the sum of the individual eigen-
values of Hcol. For large k, their difference turns out to be

Ez−OHcolP ’ −1/(2p3) F dk3(3/4)(lv2)2/k3 (17)

This may be regarded as a correction to the ‘‘bare’’ vacuum energy lv4/4,
or to the bare coupling l:

dl ’ −3l/(2p)3 F dk3/k3 (18)

Indeed it is equal to the one-loop renormalization of l. With this interpreta-
tion, then, the zero-point energy divergence is removed by normal ordering.
Nonrelativistic theories differ from relativistic ones in some respects.

In the first place, a chemical potential acts like a constant mass parameter
since there is no distinction between a scalar and the time component of a
four-vector, nor does it split particle from antiparticle since the letter is
absent. Secondly, the normal-ordering is sufficient to remove the zero-point
energies completely. There are no renormalization effects.

6. BREAKING OF SPACE-TIME SYMMETRIES

The reduction of the number of zero modes also occur in the breaking
of space-time symmetries. But can the Lorentz generators develop a con-
densate? Since they are non-commutative, do the zero modes obey the
above theorem and hence their dispersion law are not photonlike?
First one notes that the orbital part of Lorentz generators depends

on the coordinates explicitly. Its condensates are not homogeneous, so the
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zero modes of the type under discussion do not exist. (4) What about the
spin part? If a condensate is possible, how will the spin-orbit coupling
affect the zero modes?
To examine these questions, consider a relativistic analog of the

ferromagnet in the vacuum. The spin density of a fermion field is the
spatial part of the chiral current j5m=k̄c5cmk=k†(r1, si) k, and it is also a
part of the angular momentum density M0ik satisfying the su(2) (current)
algebra relations.4 It is interesting to note that the relations among the

4 It is not the algebra of current-field identity, where the spatial components are regarded
independent and hence commuting among themsleves.

spatial components of axial (si) and vector (r1si) currents (the latter cor-
responding to imaginary Lorentz boosts), stand in direct correspondence to
those for ferro- and antiferromagnetism. But for the moment consider only
a ferromagnetic analog, and take the nonlinear interaction

L int=−(g/2) j5m j 5m (19)

to see if a solution for a condensate can be found. Here g > 0 is assumed to
make the interaction attractive in the spatial channels. One may regard the
interaction as being mediated by an axial vector field.5

5 In the real world it may be generalized to the neutral current weak interaction in the Stan-
dard Model and beyond, and may provide a dynamical basis for the work of Kostelecky and
collaborators, (10) where various physical issues are discussed. A different model is given in
ref. 11. For a possibility of spontaneous generation of magnetic field in 2+1 dimensions, see
ref. 12.

Thus assume

Oj5zP=v (20)

i.e., the vacuum is polarized in the z direction (in a certain Lorentz frame
where the vacuum is defined in the standard manner), breaking Lorentz
invariance including T and TCP. The free part of the Dirac equation
reads (10)

(c · p−m+gvc5c3) k=0 (21)

with gv having the dimension of mass. It leads to the dispersion law

(p2+−m
2)(p2−−m

2)=4g2m2v2, p±, z=pz±gv,

w2=pF 2+m2+g2v2±2gv(p2z+m
2)1/2

=p2x+p
2
y+((m

2+k2z)
1/2±gv)2

(22)
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The branch with the negative sign above has various peculiarities, such as
spacelike states, w < k, and negative group velocity relative to momentum.
Setting these problems aside, this model is being considered here for the
purpose of examining the properties of collective modes.
The gap equation takes the form

1=(g/4p2)[L2/2−2m2 ln(L2/(m2+c0 g2v2))+c2 g2v2],

(a) gv° m, c2 > 0,

(b) gv± m, c2 < 0

(23)

to the lowest order in expansion in g/m or m/g. The logarithmic diver-
gence does not depend on g, i.e., a super-fine tuning of g is required.6

Case (a) should be discarded. The value c2 > 0 implies that the solution is

6 There are ambiguities depending on how one computes divergent tensorial quantities.
Observe that the condensate term does not break chirality, so when m=0 it can be elimi-
nated by a chiral gauge transformation exp(izgvc5), which would imply that the condensate
should be proportional to m, in contradiction with Eq. (23). This line of argument, similar to
removing of a chemical potential, is not followed here. (The condensate in the time compo-
nent, Oj50P, would be a bone fide chiral chemical potential.) The problem could also be
related to the chiral anomaly, although no gauge field is assumed here. Actual calculations
were done in Euclidean metric in order to maintain invariance in the (x, y, t) subspace.

unstable: the Higgs mass is tachyonic since m2H ’ −g“g(OjP/g), and there
is also no critical coupling strength; an arbitrary small g would induce SSB,
yielding an arbitrary large v.
The collective modes are the four components of the axial current

satisfying current algebra relations. The Higgs mode j5z and the two other
spatial NG modes are related by su(2), whereas the third one, the chiral
charge, commutes with the former three, except for Schwinger terms, which
would not influence the present discussion unless they were q-numbers that
could acquire an expectation value. Actually, a new Schwinger term also
emerges (see below). The properties of these modes are determined from
the correlation loops OT(j5m(x) j5n(y))P. It is difficult to see how the NG
mass can be zero since the propagators in the loops are invariant only
under the total angular momentum operation. Indeed the actual calculation
shows it to be nonzero, of order g2.
The effective Lagrangian for the collective current field Vm=j5m for

low momenta takes the form of a broken gauge theory with a Chern–
Simons term in the 3-dimensional subspace (x, y, t):
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L=LmnVmVn,

Lmn=Agmnk2+Bkmkn

+Cgmnk
2
3+Dg3m g3nk

2+Eg3m g3nk
2
3

+F(g3mknk3+g3nkmk3)

+iGE3mnlkl

−M2gmn−DM2g3m g3n (24)

The Lorentz invariant terms A and B are O( ln L). The terms breaking
Lorentz invariance are caused by gv but C, D, E, and F are dimensionless,
whereas G is O(gv) and DM2 is O(g2v2). They are all finite. The chiral
current conservation k ·V=0 is intrinsically broken by the fermion mass
(and the anomaly).
The Chern–Simons (CS) term G may be interpreted as a reflection of

the su(2) current algebra among the spatial components of V.7 It splits the

7 The effect of a similar term in electromagnetism is discussed in refs. 10 and 19.

x and y components into massless and massive chiral modes, and would
change the dispersion law to c=2 for small |k|° G, even if the ordinary
mass were zero, in conformity with the theorem above. But the ordinary
mass is actually nonzero due to the spin-orbit coupling inherent in a
Lorentz SSB. Altogether there are one massless mode and three massive
modes. From the Lie algebra point of view it may appear strange that the
CS term also involves the time component V0 which commutes with the
spatial components. One might say that this was forced by the residual
(2+1) D invariance. But it furthermore turns out that the condensate term
in the Dirac equation induces in the equal-time current commutators, in
addition to the conventional one, a new Schwinger term of the form

[j0(0), ji(x)]=CE30ik“kd3(x),

C ’ gvL
(25)

The details will be reported elsewhere.
Bjorken has argued that the photon can be generated as a result of a

vector current condensate (Dirac’s ‘‘aether’’) OjmP — Am. (13–17) Lorentz
invariance is not broken because the breaking occurs only in the gauge
potential. The three zero modes orthogonal to A match the three compo-
nents of the vector potential necessary to describe the electromagnetic field.
It is essential for this that the current be a conserved quantity. A constant
potential can be eliminated by a gauge transformation, (10) but from the
present viewpoint it should rather be construed as a chemical potential, in
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which case it will change the definition of the vacuum and affect thermo-
dynamics. This is similar to the observation made above3 regarding the
gauging away of spin condensate for massless fermion. In that case,
however, the chiral current was not conserved, and the NG bosons were
massive. The vector and axial vector condensates may be compared
respectively to those in antiferro- and ferromagnetism. (For that matter,
the Pauli electromagnetic current also stands in a similar relation to the
axial current.) Furthermore, it appears that the current conservation, the
current algebra relations, and the theorems established here about NG
bosons are interrelated. To be more precise, one sees a logical linkage:

vector condensate ’ antiferromagnetism Q c=1 P unbroken
Lorentz P conserved charge on the one hand, and
axial vector condensate ’ ferromagnetism Q c=2 P massive NG

and broken Lorentz P nonconserved charge on the other.
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